
TILAPIA (*Oreochromis niloticus*) PERFORMANCE IN CLEAR-WATER RAS, BIOFLOC, AND HYBRID NURSERY SYSTEMS

Leo J. Fleckenstein*, Thomas Tierney, and Andrew J. Ray

leo.fleckenstein@kysu.edu Research Assistant, Aquaculture Division Aquaculture Production Sciences Lab Kentucky State University Land Grant Program

United States Department of Agriculture National Institute of Food and Agriculture

Recirculating Systems

- -Lower water use/waste discharge
- -Improved biosecurity/escape risk
- -Temperature control
- -Indoor, year-round production
- -Higher animal density
- -Products near consumer markets
- -Product consistency

Recirculating Systems

Clearwater (CW)

- -Stringent solids removal
- -External biological filtration
- -UV filters
- -Filtration systems can be expensive

Biofloc (BF)

- -Limit/control solids removal
- -Allow biofloc to form in
- water
- -Biofloc particles provide internal biofiltration
- -Particles can also be a food source
- -Nitrification can be unstable
- -Increased aeration for mixing

Hybrid (HY)

- -Combine benefits of CW systems and BF systems
- -Limit/control solids removal
- -Allow biofloc to form in water
- -Use external biofilter to stabilize nitrification

Why Use Nursery Systems?

- -Reduced time to market
- -High initial stocking density
- -Smaller tank sizes, saves space
- -Nursery Phase during winter months
 - -Growout in spring/summer

Experimental Design

- -1300m², Heated/Insulated Building
- -3 Treatments
 - -Clearwater, Biofloc, Hybrid
 - -4 Replicate, 180L Tanks
 - -Tanks previously cycled
 - -55 tilapia fry per tank
 - -306 fish/m³
 - -.17g average weight
 - -63 day trial

CW Treatment

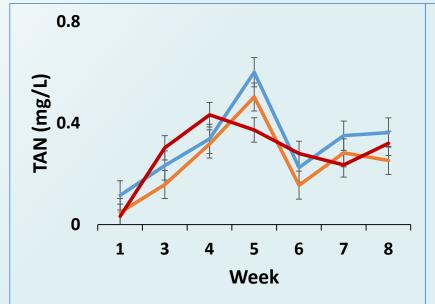
- -Settling chamber
- -Foam fractionator
- -External MBBR (Moving Bed Bio Reactor)

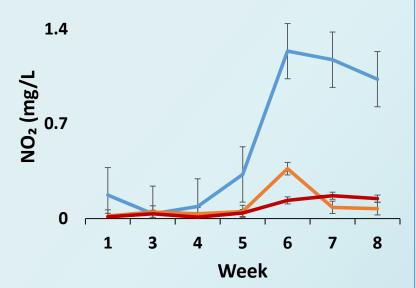
BF Treatment

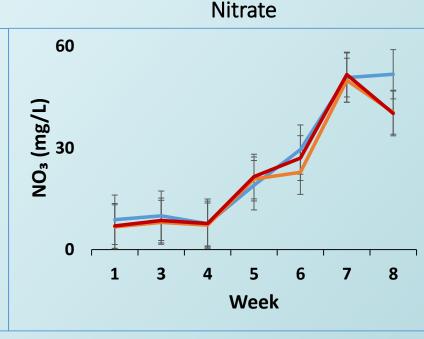
-Settling chamber

HY Treatment

- -Settling chamber
- -External MBBR

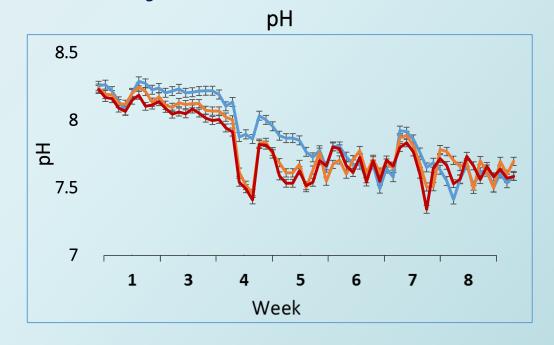

Experimental Design


- -Tilapia fed 3 times daily
- -Tank parameters measured twice daily
 - -Temperature, pH, dissolved oxygen, salinity
- -Water quality measured once every week
 - -Total Ammonia Nitrogen, Nitrite, Nitrate, Total Suspended Solids, Volatile Suspended Solids
- -Repeated measures ANOVA for water quality data
- -One-Way ANOVA for production data
 -Results considered significant when p<0.05



Water Quality





- -Significant difference in Nitrite levels
 - -Biofloc tanks had higher Nitrite
 - -No acute effect, but possible chronic effect
- -Hybrid systems had lowest peak Ammonia and Nitrite Levels

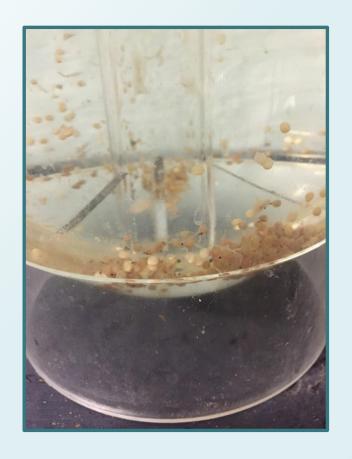
Water Quality

- -pH significantly higher in BF compared to CW/HY
 - -Sodium Bicarbonate added when pH <7.5
 - -HY systems required a significantly higher amount of Sodium Bicarbonate

Production Results

Treatment	Average Wt.(g)	Total Harvest(kg/m³)	Survival	FCR	SGR(g/day)
cw	11.3 ±0.3	3.5° ±0.0	95.5 ±2.2	0.8 ±0.0ª	17.7 ±0.0
BF	10.7 ±0.1 ^a	3.3 ±0.0 ^b	96.4 ±0.9	0.9 ±0.0 ^b	16.7 ±0.0 ^a
НҮ	11.4 ±0.2 ^b	3.5 ±0.0 ^a	95.9 ±1.7	0.8 ±0.0 ^a	18.0 ±0.0 ^b

^{*}Superscript denotes a significant difference between treatments


- -Significant difference in Average Weight (p<.05)
 - -Between HY > BF
- -Significant differences in Total Harvest
 - -Between HY, CW > BF
- -No significant difference in survival

Conclusions

- -CW and HY Systems outperformed BF Systems in tilapia production/growth
 - -No Significant differences between CW and HY
- -Nitrite issues in BF Systems
 - -External biofiltration systems seem to stabilize nitrification cycles
- -Less expensive HY Systems could be used to rear tilapia fry
- -Future Research
 - -Growout trials using HY Systems and investigations into long-term effects on water quality
 - -Examining feed and biofloc intake using stable isotope analysis

Thank You!

Funding for this project was provided by the USDA National Institute of Food and Agriculture

KSU Aquaculture Webpage: http://www.ksuaquaculture.org/